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Abstract

A partly inside and partly outside curved fold model with variable straight length and stepped variation in the
thickness of tube during folding has been developed in the present paper. The variation of circumferential strain during
the formation of fold has been taken into consideration. All model parameters viz. size of fold, optimal value of folding
parameter, maximum hinge angle and the final radius of curvature of fold have been evaluated analytically. An
expression has been derived for determining the variation of crushing load during the formation of a fold. The total
outside and total inside fold models can be easily derived from the present model. The results have been compared with
experiments and reasonably good agreement has been observed. The incorporation of change in thickness of tube
during folding has been found to reduce the folding parameter thus bringing it closer to the experiments. Some
parametric studies by varying the length of straight portion of the fold have also been conducted. The results are of help
in understanding the phenomenon of actual fold formation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Aircrafts, ships and space vehicles etc. have to withstand an accidental crash for which efficient energy-
absorbing devices are required. These energy-absorbing devices may be classified under three different
categories on the basis of the principle of (a) extrusion, (b) friction, and (c) material deformation. Cylin-
drical tubes are the most frequently used devices that absorb energy by material deformation.

Alexander (1960) carried out the pioneering work of analysis of cylindrical tubes under axial crushing in
concertina mode considering three circumferential hinges and two straight limbs in between the hinges in
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Nomenclature

o hinge angle

O maximum hinge angle

o an angle

p ratio of straight length of fold to the half fold length

0 vertical compression at hinge angle o

or total effective crushing distance corresponding to one complete fold
Iy yield strength of material

h half fold length

k a parameter

m folding parameter (=ratio of inside portion of fold to total fold length)
M, plastic moment per unit length of tube

P, mean crushing load

%;‘ non-dimensional mean crushing load

R initial mean radius of tube

Ra, Rp, Ry, R circumferential radii of curvature of tube as shown in Fig. 1
I longitudinal radius of curvature at hinge angle o

O¢ final radius of curvature of curved portion of fold

ty initial thickness of tube

/28 work done in bending in one complete fold

W, work done in circumferential deformation

Wr total work done in bending and circumferential deformation

W, total work done in crushing upto hinge angle o

X variable curved distance

folding of the tube. In this model, the bending energy was assumed to be localized at the plastic hinges and
the circumferential deformation was considered in the straight limbs. He calculated the mean crushing load
for which the calculation of only the mean circumferential strain was enough. This model was later
extended by Abbas et al. (1989, 1995) to frusta with cylindrical tube considered as a special case by
considering total inside folding. Abramowicz and Jones (1984) and Grzebeita (1990) introduced curvature
in the deforming fold length. It was found through experiments (Mamalis and Johnson, 1983; Wierzbicki
et al., 1992; Gupta and Gupta, 1993; Gupta and Velmurugan, 1997) that folding is partly inside and partly
outside the mean diameter of the tube, which was later incorporated in straight fold models (Wierzbicki
et al., 1992; Gupta and Abbas, 2000, 2001) as well as the curved fold models (Gupta and Velmurugan,
1997). The variation of crushing load was also estimated in these models for which the variation of
circumferential strain during the formation of fold was considered. In the curved fold model of Gupta and
Velmurugan (1997), folding parameter, m, which is the ratio of inside to total fold length and the maximum
hinge angle was taken either from experiments or it was assumed. In the curved fold model of Grzebeita
(1990) and Gupta and Velmurugan (1997), the straight portion of the fold was taken as one-third of fold
length, whereas, Abramowicz and Jones (1984) did not consider any straight portion. In a recent paper
(Abbas et al., 2003) on curved fold analysis, the authors estimated all of the model parameters analytically
instead of assuming them and the straight portion of fold was taken as a variable. The present paper is its
extension in which the change in the thickness of tube as considered in an earlier paper of straight fold
analysis (Gupta and Abbas, 2000) has been incorporated. All of the model parameters viz. size of fold,
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folding parameter, maximum hinge angle and hence the final radius of curvature of hinges have been
determined analytically.

Without consideration of the change in thickness, the fold parameter is found to be more than 0.5,
whereas, experiments (Gupta and Velmurugan, 1997) show that its value should be less than 0.5. Incor-
porating the change in thickness in the model, the fold parameter comes closer to experiments. The total
outside and the total inside fold models can be easily derived from the present model.

2. Analysis for axial crushing of cylindrical tubes

Considering a cylindrical tube of mean radius, R, and initial thickness ¢, for the purpose of its analysis.
The tube is undergoing axi-symmetric axial crushing. Let 4 be the half fold length out of which m# is inside
and (1 — m) A is outside the mean radius as shown in Fig. 1. In the analysis that follows, it is assumed that
the fold formation is symmetrical about its middle-plane and the tube folds both internally and externally.
The folding are partly curved and partly straight with the length of straight portion as fh.

The hinge angles corresponding to the hinges at A and C are assumed to be the same. As seen from these
figures, the point A’ is the position of the mean radius, R. The portion AA’ folds inside and portion A'C
folds outside. The point A’ may lie in curved portion AB or in the straight portion BB’ or in curved portion
B'C. The analysis given in this paper depends upon these three cases namely Case I, II and III respectively.
All the three cases have been shown in Fig. 1.

As the surface area of the portion of the tube in the process of deformation, there will be change in the
thickness of the tube. There will be decrease in thickness in outside portion of the fold due to circumfer-
ential stretching and increase in thickness during circumferential compression in its inside portion. In the
present paper stepped change in the thickness of tube as considered in an earlier paper on straight fold
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Fig. 1. Folding mechanisms of tube for different cases.
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model (Gupta and Abbas, 2000) has been considered. The average thickness of tube in the inside portion of
the fold has been taken as ¢, whereas the average thickness of the outside portion has been taken as ¢,, as
shown in Fig. 2. The values of #, and #, have been determined by considering no change in volume and
hence the change in thickness due to axial stresses has been neglected. The initial volume of inside portion,
AA’ and outside portion, A'C of round tube can be calculated as:

Volume of inside portion of fold, Vy = 2nRtymh (1)

Volume of outside portion of fold, ¥y = 2nRty(1 — m)h (2)

2.1. Case: I Point A’ lies in curved portion AB ie. m< (1 —)/2

The circumferential radii of curvatures of tube at points A, B, B’ and C (Fig. 1) are given by:

Rra=R—p,(1 —cosu) (3)

Ry =R+ p,(cosoy — cosa) (4)

Ry =R+ p,(cosoy —cosa) + fhsina (5)

Rc =R+ p,(1 +cosay —2cosa) + fhsina (6)
where, p, is the longitudinal radius of curvature of AB and B'C at hinge angle « and is given by

First, the thickness of tube in inside as well as outside portions has been determined and then these values
have been used in the computation of internal work done.

2.2. Mean thickness of inside portion of fold, t;

The circumferential radius, », of the tube at any point lying in portion AA’ which is at a distance x from
point A measured along the length of the fold (Fig. 1) is given by:

r=R—p,{coso, —cosu} (8)
where o, = (21).
Assumed
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Fig. 2. Variation in thickness of the tube.
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The volume of curved portion AA’ can be calculated by integrating the incremental volume of tube as:

R sina;  cosoy

mh
2
Vaal :/0 2ntyrdx = 2nt) (mh) {% o o

©)

By equating this volume in defined state to its initial volume, V;; given by Eq. (1), the average thickness of
inside portion of the tube can be found from the relation:

Rt,
f = LI (10)
mh [ﬁ + co;loq _ 51:211 :|
1

2.3. Mean thickness of outside portion of fold, t,

The outside portion of the tube consists of three portions viz. two curved portions A’'B, B'C and a
straight portion BB’ in between. The volume of tube in these portions has been calculated in the following.
The sum of these volumes which will be the volume of outside portion of the tube in the deformed state, has
been equated to the initial volume to find the average thickness of outside portion of the tube.

The circumferential radius, r, of the tube at any point which is lying in portion A’B at a distance x from
point A (i.e. x > mh) measured along the length of the fold (Fig. 1) is given by:

=R+ p,[cosoy — cos o] (11)
The volume of curved portion A’B can be calculated by integrating the incremental volume of tube as:

(1=p)h/2
Varg = / 27ty dx
mh

—2nty {R{@ - mh} +mh{ @ - mh}cos—“l - (mh)2<smz°‘ _sine )] (12)

o o ol

The circumferential radius, r, of the tube at any point which is lying in portion BB’ at a distance x measured
from point B is given by:

r=R+ p,(cosa; —cosa) +xsino (13)

The volume of straight portion BB’ can be calculated by integrating the incremental volume of tube from
the relation:

o h h
Vap = / 2ntyrdx = 2nt,fh | R + ’Z— (cosay —cosa) + '87 sino (14)
0 1

The circumferential radius, 7, of the tube at any point which is lying in portion B'C at a distance x from
point C measured along the length of the fold is given by:

¥ =R+ Bhsina+ p,[cos o — 2cos o+ cos o] (15)

The volume of curved portion B'C can be calculated by integrating the incremental volume of tube from the
relation:

(=2 1—B)h h h)’
Vac = 2nt, / rdx = 2nt, [% (R + Phsina + ’Z— (cosa; — 2cos oc)) + (an?) sinoe|  (16)
0 1 1
By equating the volume of outside portion in defined state of the tube to its initial volume, ¥, given by
Eq. (2), the average thickness of outside portion of the tube can be found from the relation:
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p 27'CRI()<1 — m)h
2 =
Yup 4 Taw 4 Twe
(Bt i)

]

(17)

It is to be noted here that the term #, appearing on the right hand side in the denominator gets eliminated
when the expressions for Vyy, Vagg and Vg are substituted from Egs. (12), (14) and (16) respectively.

2.4. Energy absorbed in bending

The energy absorbed in bending when angle o gets incremented by da is given by:
dm, = 2n [Mpl ( )(RA +R) +Mp2(1 - —)(R +Ry) + My (Ry +RC)}doc

Putting the values of R4, R, Ry and Rc from Egs. (3) to (6), we get

2R h h 2R h h
de:Zn{Mpl< ;l_m—kn;(cosocl)—Mpz( aal—k”;cosocl—n;cosoc)

o
4
Mp2(4R+2ﬂhsinoc—|—3o(1h cosocl—aihcosoc—i—’::—h)}doc (18)
1 1 1

M, and M, are the plastic moment capacities of the section of the tube for portion AA’ and A'C
respectively. These are given by M, = kfyt; and My, = kfyt3, where the value of k for Von-Mises crite-
rion has been taken as k = ; \/—, t dnd t, are the average thickness of the inside and outside portion of the
fold.

At the start of the collapse of the tube, the hinge angle « will be zero and radius of curvature will be
infinite. As the collapse of the tube progresses, the hinge angle increases and radius of curvature of curved
portion of fold reduces till the fold in formation comes in contact with the previously formed fold. The
hinge angle at this stage will be the maximum hinge angle oy,. No further deformation is considered and
hence contact stresses between the two limbs of consecutive folds are not developed. After reaching this
stage, next fold is assumed to begin. Therefore in the present analysis each fold is assumed to form
independently i.e. there is no simultaneous formation of folds. Total bending energy can now be computed
by integrating this expression from 0 to the maximum hinge angle, o,,, thus

I g2, m tzd m m
Wb:2nkfy{2R/ . ldoc—mh/ _oc+ h/ lfcosal dOC—2R/ tgﬂ o
& 0 o 0 o 0 o

—mh/ gcos Do+ h/ t;ﬂd +4R/ éda+2ﬁh/ £ sin ardo
0 0

0

m Olm Om l‘2d
+3mh/ b il doc—4mh/ tg"os"‘d + h/ 2—“} (19)
0 0 0

o 0

2.5. Circumferential energy

The circumferential energy for different portions viz. AA’, A’B, BB’ and B'C has been calculated in the
following:

The change in the circumferential radius of curvature for the portion between A and A’ due to the
progress in the crushing of the tube can be obtained from Eq. (8) as:

1 ) .
dr = o [o1x sin oy + mh cos oy — mhoy sin oy — mh cos oy ]doy (20)
1
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The incremental hoop strain for portion AA’ can now be obtained from:

deo] = | & 1)
The incremental hoop energy absorbed in the portion AA’ can be calculated from:

dWg, :fy/ |deg|dv = 2mfy /Omh drt; dx (22)
Putting the value of dr from Eq. (20), we get

dWey = 2nfyt (mh)? [2 S;? “_ Sizl“l _ ZCZ%S al } doy (23)

Total circumferential energy in the region AA’ can now be found by integrating it from o« = 0 to o = o,

e, :47rfym3h2 [2 /““’ H si131<x1 o — /“‘“ t; sin o da—z/am t cozs o doc} (24)
(1-8) 0 0 o 0 o

%
The incremental circumferential energies dWe,, d W3 and d W4 in the regions A’B, BB’ and B'C respectively
and the corresponding total circumferential energies W, We; and W4 can similarly be found and these are
given in the following:

dVchZM[(zm_(l —ﬁ)>C°S°‘1 _(I=p) trcosa

(1—) T R R
2m , . . (1-p) sin o
+a—%(smcx— sinoy) — < 7 —m> " ]dfx (25)
giving,
47rfy(mh)2 (1-p) /"‘“’ t> COS 0y (1-p) /“‘“ t,cos o
= —_— 2 — —
Wea -5 m 5 i i do 3 i p do
+2m/ té(sinoc—sinocl)doc—{(l_ﬁ)—m}/ tzsmaldoc] (26)
0o N 2 0 oy
AWes = 2nf tam I sinoc_ 2m sinoc1+cosoc1 L 2m Cosa—i—ﬁcosa do (27)
@ Ay o (1-8) o o2 (1-p) o 2m
giving,
mog) 2m %m sinoy  COSa
Wes =21 mhz{/ tsmad(xf / t( L 1)doc
Ll T (T S ST
2m ™ty cos o g™
— 2
+(1 —ﬁ)/o i doc+2m/0 tzcosocdoc] (28)
1— 1 . 2m . coso. m
dWey = 27rfyt2mh2[(2ﬁ) OT] (ZSlnoc — =5 smoq) —|—3ma—%—a—% COS 0

_ (l4mzﬁ) Si;l?a + ﬁ(12;1 ) cos OC:| do (29)
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giving,
1-p) [ & . 2m . "™t COS o
Wes nfym [ 5 o < sin o 7(1 "y smocl)doc+3m i 2 do
4m* [ psinada  B(1—p) [ g
_ TP /0 p: + m /0 t, cosada — m/o a—% COS 0l dfx} (30)

2.6. Case II: Point A’ lies in the straight portion BB' i.e. @ <m< w

Similar to Case I, the thickness of tube in inside and outside portions will be determined first and then
these values will be used in the computation of internal work done. The circumferential radii of curvatures
of tube at points A, B, B’ and C (Fig. 1) are given by:

h
RA:R—pa(l—cosoc)—i(2m+ﬁ—l)sinoc (31)
h .
RB:R—E(Zm—I—ﬁ—l)smcx (32)
h .
RBf:R+§(1+ﬁ—2m)smoz:Rc—pm(1—cosoc) (33)
h .
RC:R+§(1+ﬁ—2m)s1noc+px(l—cosoc) (34)

where, p, is the longitudinal radius of curvature of AB and B'C and is given by

_(L=p)h
Po = Qu

2.7. Mean thickness of inside portion of fold, t,

The circumferential radius, r, of the tube at any point which is lying in portion AB which is at a distance
x from point A measured along the length of the fold (Fig. 1) is given by:

r:R+p1[cosoc—cosoc3]—g(2m+/3—l)sinoc (36)
where
 2xo
RUEYOT

The volume of curved portion AB can be calculated by integrating the incremental volume of tube from the
relation:

(1-P)h/2
Vap = 27ty / rdx
0

(L—pB)h (1—pB)h
20

cos o —
202

= n(l — B)ht [R—f— sincx—g@m—&—ﬂ—l)sina (37)
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The circumferential radius, r, of the tube at any point which is lying in portion BA’ at a distance x from
point B measured along the length of the fold is given by:

r:R—g(2m+ﬁ—l)sinoc+xsinoc (38)

The volume of straight portion BB’ can be calculated by integrating the incremental volume of tube from
the relation:

2m~+p—1)h/2 h h
VBA’:/ antldx:2m1§(2m+ﬂ—l) R—Z(Zm—l—/f—l)sinoc (39)
0

By equating the volume of outside portion of the tube in deformed state to its initial volume, ¥, given by
Eq. (1), the average thickness of inside portion of the tube can be found from the relation:

2nRmhty
( Vap + M)

f 3|

= (40)

2.8. Mean thickness of outside portion of fold, t,

The circumferential radius, r, of the tube at any point which is lying in portion A’B’ at a distance x from
point A’ measured along the length of the fold is given by:

r=R+xsina (41)

The volume of straight portion A’B’ can be calculated by integrating the incremental volume of tube from
the relation:

(B—2m+1)h/2 h
Varg :/ 2nrty dx = wtrh(f — 2m + 1) R—|—Z(ﬂ—2m+ 1)sina (42)
0

The circumferential radius, r, of the tube at any point which is lying in portion B'C at a distance x from
point C measured along the curved length of the fold is given by:

r:R+g([3+1—2m)sinoc+p“(cos(9—cosoc) (43)

The volume of curved portion B'C can be calculated by integrating the incremental volume of tube from the
relation:

” 11— h . 1 —p)h ( si
Ve = / 2nrtyp,d0 = antzR# R+ 3 (f+1—2m)sino + ( Zﬂ) { 51;20( - co;oc H (44)
0

By equating the volume of outside portion of the tube in deformed state to its initial volume, V;,, given by
Eq. (2), the average thickness of outside portion of the tube can be found from the relation:

. 27'CR(1 — m)ht()
tz - ( Varg! VB’C)
—AB Jr _BC

b 5]

(45)
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2.9. Energy absorbed in bending

The incremental energy absorbed in bending is given by

dVVb = 27T|_Mp1(RA +RB) +Mp2(RB' +Rc)JdOC

= 4nM,, {R _d Zaﬁ)h(l —cosa) —g(Zm—i—ﬁ— l)sinoc} do
+ 4nM,, {R#—g(l +f—2m) sinoc—i—%(l —cosoc)}doc (46)

Total bending energy can now be computed by integrating this expression from 0 to the maximum hinge
angle, oy, thus

W, = dnkf, {R/'m(z%ﬂg)da(l_f)h/m é(tlz—tg)(l — cosa)da
0 0

—g(2m+[3—1)/Omtfsinacdoc+g(l+ﬁ—2m)/0mtﬁsinocdoc] (47)

2.10. Circumferential energy

The circumferential energy for different portions viz. AB, BA’, A’'B’ and B'C has been calculated in the
following:
The change in the circumferential radius of curvature for the portion between A and B can be obtained
from Eq. (36) as:
(1—p)h

dr = 2 {cosa; — asino — cosa}da +§ sin o3 dor —g(2m + f—1)cosadx (48)

The incremental hoop energy absorbed in the portion AB can be calculated as:

anf, [0 .
die = o / [(1 — B)h{cos a3 — asina — cos o}do
0

+ 2o sin o3 dow — o2 (2m + B — 1) cos adordx]

or,

— B2
a0 B)h

203

Cm+p—-1)
(I-5)

{—oczsinoc—zoccosoc+sinoc—occosoz+sinoc—rx3 cosa|do

(49)
Total circumferential energy in the region AB can now be found by integrating it from o = 0 to o = oy.

W — nfy(l 2[3)2}12 [2/“"‘ f sinadoc_z/““’ f cosocd“_/"““ f sinozdoC
0 0 0

o3 o? o

— W /Oxm t cOs ocdoc} (50)

The incremental circumferential energy dWc,, dWe; and dWgy in the region BA’, A'B’ and B'C respectively
and the corresponding total circumferential energy Wc,, We3 and Wy can similarly be found and these are
given in the following:
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h2
dWe, = —nfytlz(Zm—i-ﬁ— 1)* cos ada (51)
giving
(2 —1)7 [
Wer = —Tffy% / t; cosoda (52)
0
W )
AW :”fyz(ﬂ‘z’”“) t, cos odo (53)
giving
h2 5 Om
chznfyz(ﬁ—2m+1) t cos o.do (54)
0
(1=K [(B+1-2m) sina  2cosa  2sino
dWes = nfyt > i=p cosa + " + PR do (55)
giving
(U =BR[(B+1—2m) /"‘m /“‘“ sin o 2 /“’" 1, cos o
Wes = nfy 7 =5 | t, cosodo + | t " 1 e doa+2 | e do
(56)

2.11. Case III: Point A’ lies in the curved portion B'C i.e. M <m<1

The circumferential radii of curvatures of tube at points A, B, B’ and C (Fig. 1) are given by:

Rc=R+p,(1 —cosoy) (57)
Ry =R — p,(cosa; —cosa) (58)
Rp = Ry — Phsina =R — p,(cosoy — cosa) — fhsina (59)
Ryn=R—p,(cosoy —2cosa+ 1) — fhsina (60)
where
21 —m)a
" o
and,
2(1 —m
dal = ﬁdd (62)

2.12. Mean thickness of inside portion of fold, t,

The circumferential radius, 7, of the tube at any point which is lying in portion AB at a distance x from
point A measured along the length of the fold is given by:

r=R—p,[coso; —2coso+ cosoz] — fhsina (63)

The volume of straight portion AB can be calculated by integrating the elemental volume of tube from the
relation:
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(1-p)h/2 1— :
VAB:27U1/ rdx = nt (1 — B R—ﬁhsina—%{coscxl—2cosa+¥}] (64)
0

The circumferential radius, r, of the tube at any point which is lying in straight portion BB’ at a distance x
from point B measured along the length of the fold is given by:

r=R—p,(cosa —cosa)— fhsino + xsino (65)

The volume of straight portion BB’ can be calculated by integrating the elemental volume of tube from the
relation:

ph 1—
Vep = 271t / rdx = 2t fh [R — # (cosay —cosa) — % sin o (66)
0

The circumferential radius, 7, of the tube at any point which is lying in portion B’A’ at a distance x from
point C measured along the length of the fold is given by:

r=R—p,(cosoy — cosas) (67)

The volume of curved portion B’A’ can be calculated by integrating the elemental volume of tube from the
relation:

(1=p)h/2
Voar = 2nt1/ rdx
(

—m)h

= 1ht [(Zm - p- 1){R - % cosocl} +(1- ﬁ)zziaz(sinfx —sinoy) (68)

By equating the volume of inside portion of the tube in deformed state to its initial volume, V5, given by
Eq. (1), the average thickness of inside portion of the tube can be found from the relation:
2nRtomh

= (69)
V) Vagr! Virar
<%+ BB’ +37A)

4 4

2.13. Mean thickness of outside portion of fold, t,
The circumferential radius, », of the tube at any point which is lying in portion CA’ at a distance x from
point C measured along the length of the fold is given by:
=R+ p,(cosoz —cosa) (70)

The volume of curved portion CA’ can be calculated by integrating the elemental volume of tube from the
relation:

(1—m)h
VCA' = 27U2/ rdx
0
or,

Vea _ (L-p)'r (1 - (1 —m)
T_2an(l—m)h+T Sin oy — =—————— cos (71)

Considering the conservation of mass i.e. equating the total volume in the deformed state to its initial
volume, we get the average thickness of the tube as,
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. 27{Rto(1 - m)h

b= o (72)
n
where, Vf—;’ is given by Eq. (71).
2.14. Energy absorbed in bending
The energy absorbed in bending when angle o gets incremented by de, is given by

AWy = 20 My (R + Ry) + My (1= 2 ) (R + R) + My 2 (R + Re) | d
or,

dW, = 2nkfy [tf{2R - %(2003 oy —3cosa+ 1) —2fhsino + (1 - %)

X <2R _a ;f)h (cosa; — cos rx)) } + t%% {ZR + a ;aﬁ)h (1— cosal)H dao (73)

Total bending energy can now be computed by integrating this expression from 0 to the maximum hinge
angle, o, thus

o

" {2R _( ;f)h (cos o —cosoc)Hdoc+2nkfy /Oam t%% (2R+%(1 — cos ocl)>doc

Om 1_
Wy = anfy/ tf[ZR—%(Zcosal —3cosa+ 1) —2phsina + (1 —ﬂ)
0

(74)

2.15. Circumferential energy

The circumferential energy for different portions viz. AB, BB’, B'A’ and A’C has been calculated in the
following:

The change in the circumferential radius of curvature for the portion between A and B can be obtained
from Eq. (63) as:

1— 2
dr = _% |:28i1’10(d0( — sin O(ldOCI — ﬁ SinOC3 do
+ % [cosoy — 2cos o+ cosoz|da — fhcosodo (75)

The incremental hoop energy absorbed in the portion AB can be calculated as:

(1-B)h/2 1= Bk ) . 2x .
dWey :27rt1fy/0 [—%{ZQnada—smmdal —m51na3}dadx
(1—PB)h

+ 202

{cosa —2cosa+ cosas}da — fhcos ocdoc] dx
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or

— B2 _
dWc1 = 2nt1fym |: 06{251110(2(1”1) sinoq}

4o? (1-p)
2 . 2B
- - - d 76
3cosoc+cosoc1+asmoc -5 cosoc] o (76)

Total circumferential energy in the region AB can now be found by integrating it from o = 0 to o = oy,.

(1—p)h? /“‘“ tisina (1 —o? 2(1 —m) /“"‘ t sin o
Wer = — 2 —— | —— |da+ d
c1 = 2nf, 1 i ., e o a=p J " o

"m(cosay — 3cosa) 2p /“m
t do — t d 77
+/O 1 % o a—p 1cosada ( )
The incremental circumferential energy dWe,, dWe; and dWe, and the corresponding total circumferential

energy Wea, Wes and Wy in the regions BB, B’A’ and A’C respectively can similarly be found and these are
given in the following:

or,
dWe, = ntlfyﬁhz{(l ;ﬂ) { o oc_ o8 sina}dac +2(1 —m) sinonda pcosado (78)
“m [ cosoy —coso — asino
Wey = nf, i {(1—/3)/ rl{ ! > }doc
0
+2(1—m)/mn S doc—ﬁ/m f cosocdoc] (79)
0 o 0
B 2 [(B=1D(@2sina—acosa —2sinay) - 2m—B-1)(1—m) .
dWes = nti fy(f — 1) [ 3 da G- 1) sin oy dot
(3—4m+ p)
—+ T COS o doc (80)

do

Wes = nfo (B — 1)h2[(1 -p) /“"‘ H(2sino — acosa — 2sinay)
0

2 o3

Gnop D) s, G- [ s -
AWes = nfyta(1 — ) H%’gz Si‘;“l dot+2(1 — m) Co;“l do— (1 - f) Si‘;;’“ du] (82)
Wes = nfy(1 - B2 [28 _’;))2 /Oam B Gy 4 21— m) /Oxm P o

—(1-p) /0 " S;Ij il dcx] (83)

Total incremental strain energy for the small increment in angle o by da for each case can be calculated as
dWr = dWy, + 2(dWey + AWy + dWes + dWey) (84)
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Total work done for each case in crushing up to hinge angle « can then be calculated from:
W, — / s = / (AW + 2(d ey + dWen + s + dWes)] (85)
0 0

Total energy absorbed in bending and circumferential deformation up to maximum hinge angle, oy, can
thus be calculated for each case from

W = W 4+ 2(Wer + Weo + Wes + Wes) (86)

3. Average crushing load

Applying the energy balance by equating the external work done to the energy absorbed in bending and
circumferential deformation, the mean crushing load, P,, can be obtained from the expression:

Pnor = Wr (87)

where, Wt is the total energy absorbed in bending and circumferential deformation to be calculated from
Eq. (86) by suitably putting the values of W,, Wc1, Wea, Wes, and Weq depending upon the applicability of the
case considered in the analysis above; and Jr is the total effective crushing distance corresponding to one
complete fold which is given by:

O =2h—ty — 2p; (88)

where, p; = (IZ;—W': final radius of curvature of curved portion of fold; and o, is the maximum hinge angle.

Eq. (87) is based on the assumption that the energy is absorbed in plastic deformation in bending and
circumferential deformations only and thus neglecting the energy absorption in axial and shear deforma-
tion.

4. Size of fold and folding parameter

The size of fold, 4, and the folding parameter, m, can be determined by minimizing the mean crushing
load P, thus

0Py
oh 0 )
0Py

=0 (90)

The expression for mean crushing load being very complex, closed-form solution for /4 as well as m can not
be found and, therefore, these can be determined numerically.

5. Variation of crushing load

The crushing load, P at any instant of crushing when the rotation of fold is o, can be calculated by

aw,
- 91
% o1

P =
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where, W, is the total work done in crushing up to an angle o given by the Eq. (85) and ¢ is the vertical
compression given by:

0=2h—4p,sino — 2fhcoso (92)
and, therefore,
do =2(1 - p)h Sl;“da —2(1— Pk CO: % do + 2phsin ador (93)

6. Mode of collapse

For the understanding of the mode of deformation, progress of collapse of round tubes for f =1/3 as
taken in (Grzebeita, 1990; Gupta and Velmurugan, 1997) has been shown in Fig. 3 The values of o for
which the deformed shape of tube has been shown in these figures have been chosen arbitrarily so as to
show the progress of collapse of tubes distinctly, but final value of « is the maximum hinge angle, after
which no further deformation is considered in the fold. The final crushed shape of tubes for different values
of B(f=0,1/4,1/3,1/2, 2/3, 3/4,0.9 and 1) has been shown in Fig. 4. The maximum hinge angle for every
case has also been mentioned under each figure. Mathematically, maximum hinge angle o, corresponds to
the stage at which crushing distance is equal to the final crushing distance Jr given by Eq. (88). The
influence of the thickness of tube on the maximum hinge angle and the mode of deformation has been
neglected.

The variation of maximum hinge angle with the variation of the value of f has been plotted in Fig. 5. The
variation of final radius of curvature of tube with the variation of f has also been shown in this figure. The
best-fit equations for the estimation of o, (in deg.) and final radius of curvature are given below

O = —52.4536> 4+ 139.38> — 146.998 + 149.73 (94)
(oc:I90°) (@=95")
(0=100") (=105")
@=110) (a=0m=114.3")

B=Straight fold length coefficient = 1/3
o.=Hinge angle at any stage of collapse
om= Maximum hinge angle

Fig. 3. Progressive collapse of round tube for ff = 1/3.
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= (B=114)
Eg;zios)o ) (0=120.7°)

- @=12)
o) (4=104.7°)

— | — == | —

(B=213) (B=314)

(0n=98.2°) (0 =95.6°)
———] | jfa—————

(p=09) (3=1.0)

(0m=91.9%) (gm:s)o“)

B =straight fold length coefficient
Om= Maximum hinge angle

Fig. 4. Final crushed shape of round tube.

% =-0.165642—0.03243 + 0.1944
............................ o, = -52.453/° +139.383% —146 993 +149.73

160 0.25
------- Angle
5 Radius/h || =
2 140 +— 0.20 53
= S
1
T + 015 2
= <
g 120 A . §
2 RN T010 &
g 1007 4005 &
80 T T T T 0.00
0.0 0.2 0.4 0.6 0.8 1.0
Straight Length / Size of Fold ()
Fig. 5. Variation of hinge angle and p;/h with variation in f.
and
% = —0.16568> — 0.0324f + 0.1944 (95)

The maximum hinge angle and the non-dimensional final radius of curvature of tube are independent of
the radius of tube as well as the size of fold. The value of maximum hinge angle thus obtained for a known
value of § has been used in the integration involved in the mathematical model.
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7. Validation with experiments

Some experimental results involving crushing of aluminium and steel cylindrical tubes (Table 1) have
been reported in literature (Gupta and Velmurugan, 1997; Gupta and Abbas, 2000, 2001). Out of these
experiments, two results (Table 2) for which load—-compression curves are available have been taken for the
purpose of validation of the mathematical model presented in the paper.

7.1. Size of fold and folding parameter

Since no closed form solution is available for the determination of size of fold and folding parameter,
these have been determined numerically by minimizing the mean crushing load using Egs. (89) and (90).
The values of size of fold and folding parameter thus calculated are reported in Tables 2-4 for outside
folding, inside folding, and partly inside/outside folding respectively. The results of change in thickness of
tube are also given in these tables. Four different values of f have been considered in these calculations.

It is observed from these tables that the size of fold decreases with increase in the value of f for outside
folding, inside folding as well as partly inside/outside folding. The statement is true for no change in
thickness as well as change in thickness also. For outside folding with increase in the value of f3, the
consideration of change in thickness of tube results in the increase of the size of the fold. For inside folding
with increase in the value of f3, the consideration of change in thickness of tube results in the decrease in the
size of fold. For partly inside/outside folding with increase in the value of f3, the consideration of change in
thickness of tube does not have any significant effect on the size of fold.

Table 1
Experimental results involving crushing of cylindrical tubes

Parameter Steel tube (fy = 400 MPa) Aluminium tube (fy = 160 MPa)

Radius, R (mm) 21.50 24.80
Mean thickness, £, (mm) 1.80 1.60
Size of fold, 4 (mm) 17.50 6.74
Folding parameter, m 0.274 0.257
Non-dimensional mean crushing load?, P, /Py - 0.455

* Py = 27Riy fy.

Table 2
Analytical results for total outside folding®

Straight fold length coefficient, f Mean crushing load, P, /Py Size of fold, 4 (mm) Thickness of outside
portion of fold, #, (mm)

Steel tube

0.0 0.615(0.496) 13.92(15.42) 1.80(1.434)
1/3 0.539(0.451) 11.96(12.96) 1.80(1.459)
2/3 0.498(0.417) 10.38(11.26) 1.80(1.462)
1.0 0.459(0.386) 09.36(10.20) 1.80(1.456)

Aluminium tube

0.0 0.530(0.436) 13.92(15.36) 1.60(1.311)
173 0.469(0.399) 11.82(12.88) 1.60(1.332)
2/3 0.429(0.367) 10.36(11.20) 1.60(1.334)
1.0 0.395(0.339) 09.34(09.96) 1.60(1.333)

#Values within parenthesis are for change in thickness condition.
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Table 3
Analytical results for total inside folding®
Straight fold length Mean crushing load (P,/R) Size of fold 4 (mm) Thickness of inside
coefficient, f§ portion of fold, # (mm)
Steel tube
0.0 0.526(0.656) 13.88(12.36) 1.80(2.269)
1/3 0.478(0.580) 11.74(10.38) 1.80(2.219)
2/3 0.441(0.530) 10.26(09.26) 1.80(2.227)
1.0 0.426(0.453) 09.46(08.52) 1.80(2.239)

Aluminium tube

0.0 0.467(0.558) 13.80(12.70) 1.60(1.961)
13 0.420(0.494) 11.72(10.82) 1.60(1.929)
23 0.385(0.452) 09.44(09.02) 1.60(1.909)
1.0 0.370(0.389) 09.44(08.62) 1.60(1.933)

#Values within parenthesis are for change in thickness condition.

Table 4
Analytical results for partly inside and partly outside folding
Straight fold length Mean crushing ~ Folding Size of fold®, # Thickness of inside Thickness of outside
coefficient (/) load® (Pn/P) parameter®, m  (mm) portion of fold, # portion of fold, # (mm)
(mm)
Steel tube
0.0 0.414(0.382) 0.62(0.44) 17.78(16.94) 2.116 1.538
1/3 0.392(0.373) 0.68(0.42) 14.22(14.32) 2.055 1.534
2/3 0.355(0.337) 0.52(0.46) 13.56(14.02) 2.107 1.536
1.0 0.309(0.295) 0.52(0.44) 12.82(12.90) 2.074 1.541

Aluminium tube

0.0 0.361(0.339) 0.62(0.44) 17.90(16.50)  1.831 1.399
173 0.342(0.324) 0.68(0.48) 14.26(15.96)  1.856 1.392
23 0.307(0.293) 0.52(0.44) 13.58(13.22)  1.805 1.397
1.0 0.267(0.257) 0.52(0.46) 12.84(12.86)  1.817 1.404

#Values within parenthesis are for change in thickness condition.

The value of m obtained for both tubes is more than 0.5 because of lesser energy absorption in cir-
cumferential deformation for inside portion of fold (Gupta and Abbas, 2000, 2001), when change in
thickness of tube is not considered.

The consideration of change in thickness is found to have reduced the value of parameter m which is due
to the increase in the thickness of the inside part of fold and decrease in the thickness of the outside part of
the fold, thus resisting the inside movement of the fold. The value of m for both tubes is found to range
from 0.42 to 0.48. It is also observed that the value of parameter m comes closer to the experimental values
after considering change in thickness for aluminium tube.

7.2. Mean crushing load

The value of non-dimensional mean crushing load ‘P, /P, for outside folding, inside folding and partly
inside/outside folding models are given in Tables 2-4 for steel as well as aluminium tube, where
Py = 2nRt f, the effect of change in the thickness of tube in all the three models has also been given in these
tables.
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It is observed from the analysis of steel as well as aluminium tubes that the mean crushing load and
hence, the total energy absorbed in crushing reduces as the value of f increases. This is true for all the three
models namely outside model, inside model and partly inside/outside model.

The consideration of change in thickness in outside and partly inside/outside folding models results in
decrease in mean crushing load whereas for inside folding it is vice versa. This is valid for all values of f.
The influence of change in thickness on the mean crushing load is however small. The decrease in the mean
crushing load in the outside fold model is due to the decrease in thickness of tube during folding whereas for
inside fold model, there will be increase in thickness thus resulting in increase in mean crushing load. In the
partly inside/outside fold model there will be an increase in the value of mean crushing load because of
increase of thickness in the inner portion of fold and decrease in mean crushing load because of decrease in
thickness in the outside portion of fold. It is due to this reason the effect of consideration of change in
thickness in partly inside/outside fold model on the mean crushing load is insignificant.

In quantitative terms, the influence of change in thickness on the mean crushing load for total outside
folding varies from 7% to 19% for steel tube and 14% to 17% for aluminium tube taken in the study. The
corresponding values of change in mean crushing load for total inside folding vary from 6% to 24% for steel
tube and 5% to 19% for aluminium tube, whereas for partly inside/outside folding the effect of change in
thickness on mean crushing load is minimum and it varies from 4% to 7% for steel tube and 4% to 6% for
aluminium tube. Maximum effect of change in thickness is for § = 0 (i.e. no straight length in fold) and
minimum for f =1 (i.e. total straight fold).

7.3. Load—deformation curves

The size of fold and the folding parameter determined numerically by minimizing the mean crushing
load have been used for finding out the variation of crushing load.

The load-deformation curves for all the three models (i.e. outside, inside and partly inside/outside
models) for different values of f and for constant as well as varying thickness have been shown in Figs. 6-11
for steel tube (b in the legend of figures may be read as f3). The analytical load—deformation curves are not
starting from zero load level due to the neglect of the elastic deformation in the beginning. For all the three
models with constant as well as varying thickness of tube, the reduction in value of  brings the analytical
load—deformation curves closer to the experimental curves.

With change in thickness in outside and partly inside/outside folding models, the load-deformation
curve drifts away from the experimental curve, whereas for inside folding it is vice versa. This holds for all
values of f5.

1.0

s = =Experiment
& Analytical (6=0.0)
3 084 A N\NN |- Analytical(b=0.33)
3@ / - = = Analytical(h=0.67)
£ 064 ( Analytical(b=1)
3
=
©
5 04+
g |
2 o.z-' ~~~~~~~~
(=}
z |

00 . . .

0.0 50 10.0 15.0 20.0

Deformation (mm)

Fig. 6. Load compression curves of R = 21.5 mm, 7, = 1.8 mm steel tube for outside folding with no change in thickness.
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Fig. 7. Load compression curves of R = 21.5 mm, # = 1.8 mm steel tube for outside folding with change in thickness.
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Fig. 8. Load compression curves of R = 21.5 mm, # = 1.8 mm steel tube for inside folding with no change in thickness.
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Fig. 9. Load compression curves of R = 21.5 mm, #, = 1.8 mm steel tube for inside folding with change in thickness.
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Fig. 10. Load compression curves of R = 21.5 mm, #, = 1.8 mm steel tube for partly inside and partly outside folding with no change in
thickness.
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Fig. 11. Load compression curves of R = 21.5 mm, # = 1.8 mm steel tube for partly inside and partly outside folding with change in
thickness.
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Fig. 12. Load compression curves of R = 24.8 mm, # = 1.6 mm aluminium tube for outside folding with no change in thickness.
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Fig. 13. Load compression curves of R = 24.8 mm, #, = 1.6 mm aluminium tube for outside folding with change in thickness.

Fig. 14. Load compression curves of R = 24.8 mm, # = 1.6 mm aluminium tube for inside folding with no change in thickness.
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Fig. 16. Load compression curves of R = 24.8 mm, #, = 1.6 mm aluminium tube for partly inside and partly outside folding with no
change in thickness.
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Fig. 17. Load compression curves of R = 24.8 mm, # = 1.6 mm aluminium tube for partly inside and partly outside folding with
change in thickness.

For aluminium tube, similar observations are made. The results have been plotted in Figs. 12-17 (b in
the legend of figures may be read as f3).

8. Conclusions

In the present paper, a curved fold model with variable straight length and variation in the thickness of
tube has been developed. The variation of circumferential strain during the formation of fold has been
taken into consideration. The present model considers partly inside and partly outside folds and thus total
outside and total inside fold models can be easily derived. Optimal value of folding parameter, m, has been
evaluated analytically. An expression has been derived for determining the variation of crushing load
during fold formation. The maximum hinge angle and the final radius of curvature of fold have been
determined mathematically.
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The size of fold decreases with increase in the value of  for outside folding, inside folding as well as
partly inside and partly outside folding with no change in thickness. The consideration of change in
thickness in the partly inside and partly outside folding does not have any significant effect on the size of
fold. For outside folding and for known value of 5, the consideration of change in thickness of tube results
in the increase in the size of fold, and vice versa in the case of inside folding. The folding parameter, m,
reduces when change in the thickness of tube during the formation of fold is incorporated in the model thus
bringing it closer to the experiments. The mean crushing load reduces with increase in the value of . The
results have been compared with experiments.
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