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Abstract

A partly inside and partly outside curved fold model with variable straight length and stepped variation in the

thickness of tube during folding has been developed in the present paper. The variation of circumferential strain during

the formation of fold has been taken into consideration. All model parameters viz. size of fold, optimal value of folding

parameter, maximum hinge angle and the final radius of curvature of fold have been evaluated analytically. An

expression has been derived for determining the variation of crushing load during the formation of a fold. The total

outside and total inside fold models can be easily derived from the present model. The results have been compared with

experiments and reasonably good agreement has been observed. The incorporation of change in thickness of tube

during folding has been found to reduce the folding parameter thus bringing it closer to the experiments. Some

parametric studies by varying the length of straight portion of the fold have also been conducted. The results are of help

in understanding the phenomenon of actual fold formation.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Aircrafts, ships and space vehicles etc. have to withstand an accidental crash for which efficient energy-
absorbing devices are required. These energy-absorbing devices may be classified under three different

categories on the basis of the principle of (a) extrusion, (b) friction, and (c) material deformation. Cylin-

drical tubes are the most frequently used devices that absorb energy by material deformation.

Alexander (1960) carried out the pioneering work of analysis of cylindrical tubes under axial crushing in

concertina mode considering three circumferential hinges and two straight limbs in between the hinges in
* Corresponding author. Tel.: +91-571-2421521; fax: +91-571-2700528.

E-mail address: abbas_husain@hotmail.com (H. Abbas).

0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.05.068

mail to: abbas_husain@hotmail.com


Nomenclature

a hinge angle

am maximum hinge angle

a1 an angle

b ratio of straight length of fold to the half fold length

d vertical compression at hinge angle a
dT total effective crushing distance corresponding to one complete fold

fy yield strength of material

h half fold length
k a parameter

m folding parameter (¼ ratio of inside portion of fold to total fold length)
Mp plastic moment per unit length of tube

Pm mean crushing load
Pm
P0

non-dimensional mean crushing load

R initial mean radius of tube

RA, RB, R0
B, R

0
C circumferential radii of curvature of tube as shown in Fig. 1

qa longitudinal radius of curvature at hinge angle a
qf final radius of curvature of curved portion of fold

t0 initial thickness of tube

Wb work done in bending in one complete fold

Wc work done in circumferential deformation

WT total work done in bending and circumferential deformation

Wa total work done in crushing upto hinge angle a
x variable curved distance
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folding of the tube. In this model, the bending energy was assumed to be localized at the plastic hinges and
the circumferential deformation was considered in the straight limbs. He calculated the mean crushing load

for which the calculation of only the mean circumferential strain was enough. This model was later

extended by Abbas et al. (1989, 1995) to frusta with cylindrical tube considered as a special case by

considering total inside folding. Abramowicz and Jones (1984) and Grzebeita (1990) introduced curvature

in the deforming fold length. It was found through experiments (Mamalis and Johnson, 1983; Wierzbicki

et al., 1992; Gupta and Gupta, 1993; Gupta and Velmurugan, 1997) that folding is partly inside and partly

outside the mean diameter of the tube, which was later incorporated in straight fold models (Wierzbicki

et al., 1992; Gupta and Abbas, 2000, 2001) as well as the curved fold models (Gupta and Velmurugan,
1997). The variation of crushing load was also estimated in these models for which the variation of

circumferential strain during the formation of fold was considered. In the curved fold model of Gupta and

Velmurugan (1997), folding parameter, m, which is the ratio of inside to total fold length and the maximum
hinge angle was taken either from experiments or it was assumed. In the curved fold model of Grzebeita

(1990) and Gupta and Velmurugan (1997), the straight portion of the fold was taken as one-third of fold

length, whereas, Abramowicz and Jones (1984) did not consider any straight portion. In a recent paper

(Abbas et al., 2003) on curved fold analysis, the authors estimated all of the model parameters analytically

instead of assuming them and the straight portion of fold was taken as a variable. The present paper is its
extension in which the change in the thickness of tube as considered in an earlier paper of straight fold

analysis (Gupta and Abbas, 2000) has been incorporated. All of the model parameters viz. size of fold,
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folding parameter, maximum hinge angle and hence the final radius of curvature of hinges have been

determined analytically.

Without consideration of the change in thickness, the fold parameter is found to be more than 0.5,

whereas, experiments (Gupta and Velmurugan, 1997) show that its value should be less than 0.5. Incor-
porating the change in thickness in the model, the fold parameter comes closer to experiments. The total

outside and the total inside fold models can be easily derived from the present model.
2. Analysis for axial crushing of cylindrical tubes

Considering a cylindrical tube of mean radius, R, and initial thickness t0 for the purpose of its analysis.
The tube is undergoing axi-symmetric axial crushing. Let h be the half fold length out of which mh is inside
and ð1� mÞ h is outside the mean radius as shown in Fig. 1. In the analysis that follows, it is assumed that
the fold formation is symmetrical about its middle-plane and the tube folds both internally and externally.

The folding are partly curved and partly straight with the length of straight portion as bh.
The hinge angles corresponding to the hinges at A and C are assumed to be the same. As seen from these

figures, the point A0 is the position of the mean radius, R. The portion AA0 folds inside and portion A0C

folds outside. The point A0 may lie in curved portion AB or in the straight portion BB0 or in curved portion

B0C. The analysis given in this paper depends upon these three cases namely Case I, II and III respectively.

All the three cases have been shown in Fig. 1.

As the surface area of the portion of the tube in the process of deformation, there will be change in the

thickness of the tube. There will be decrease in thickness in outside portion of the fold due to circumfer-

ential stretching and increase in thickness during circumferential compression in its inside portion. In the

present paper stepped change in the thickness of tube as considered in an earlier paper on straight fold
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Fig. 1. Folding mechanisms of tube for different cases.
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model (Gupta and Abbas, 2000) has been considered. The average thickness of tube in the inside portion of

the fold has been taken as t1, whereas the average thickness of the outside portion has been taken as t2, as
shown in Fig. 2. The values of t1 and t2 have been determined by considering no change in volume and
hence the change in thickness due to axial stresses has been neglected. The initial volume of inside portion,
AA0 and outside portion, A0C of round tube can be calculated as:
Volume of inside portion of fold; V01 ¼ 2pRt0mh ð1Þ

Volume of outside portion of fold; V02 ¼ 2pRt0ð1� mÞh ð2Þ
2.1. Case: I Point A0 lies in curved portion AB i.e. m6 (1� b)=2

The circumferential radii of curvatures of tube at points A, B, B0 and C (Fig. 1) are given by:
RA ¼ R� qað1� cos a1Þ ð3Þ

RB ¼ Rþ qaðcos a1 � cos aÞ ð4Þ

RB0 ¼ Rþ qaðcos a1 � cos aÞ þ bh sin a ð5Þ

RC ¼ Rþ qað1þ cos a1 � 2 cos aÞ þ bh sin a ð6Þ
where, qa is the longitudinal radius of curvature of AB and B
0C at hinge angle a and is given by
qa ¼
ð1� bÞh
2a

¼ mh
a1

ð7Þ
First, the thickness of tube in inside as well as outside portions has been determined and then these values

have been used in the computation of internal work done.

2.2. Mean thickness of inside portion of fold, t1

The circumferential radius, r, of the tube at any point lying in portion AA0 which is at a distance x from
point A measured along the length of the fold (Fig. 1) is given by:
r ¼ R� qafcos a2 � cos a1g ð8Þ
where a2 ¼ xa1
mh

� �
.

t1 t2 t0

OutsideInside

Actual

Assumed
Initial

Fig. 2. Variation in thickness of the tube.
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The volume of curved portion AA0 can be calculated by integrating the incremental volume of tube as:
VAA0 ¼
Z mh

0

2pt1rdx ¼ 2pt1ðmhÞ2
R
mh

�
� sin a1

a21
þ cos a1

a1

�
ð9Þ
By equating this volume in defined state to its initial volume, V01 given by Eq. (1), the average thickness of
inside portion of the tube can be found from the relation:
t1 ¼
Rt0

mh R
mh þ

cos a1
a1

� sin a1
a2
1

h i ð10Þ
2.3. Mean thickness of outside portion of fold, t2

The outside portion of the tube consists of three portions viz. two curved portions A0B, B0C and a

straight portion BB0 in between. The volume of tube in these portions has been calculated in the following.

The sum of these volumes which will be the volume of outside portion of the tube in the deformed state, has

been equated to the initial volume to find the average thickness of outside portion of the tube.

The circumferential radius, r, of the tube at any point which is lying in portion A0B at a distance x from
point A (i.e. x > mh) measured along the length of the fold (Fig. 1) is given by:
r ¼ Rþ qa½cos a1 � cos a2
 ð11Þ
The volume of curved portion A0B can be calculated by integrating the incremental volume of tube as:
VA0B ¼
Z ð1�bÞh=2

mh
2pt2rdx

¼ 2pt2 R
ð1� bÞh
2

��
� mh

	
þ mh

ð1� bÞh
2

�
� mh

	
cos a1

a1
� ðmhÞ2 sin a

a21



� sin a1

a21

��
ð12Þ
The circumferential radius, r, of the tube at any point which is lying in portion BB0 at a distance x measured
from point B is given by:
r ¼ Rþ qaðcos a1 � cos aÞ þ x sin a ð13Þ
The volume of straight portion BB0 can be calculated by integrating the incremental volume of tube from

the relation:
VBB0 ¼
Z bh

0

2pt2rdx ¼ 2pt2bh R
�

þ mh
a1

ðcos a1 � cos aÞ þ
bh
2
sin a

�
ð14Þ
The circumferential radius, r, of the tube at any point which is lying in portion B0C at a distance x from
point C measured along the length of the fold is given by:
r ¼ Rþ bh sin a þ qa½cos a1 � 2 cos a þ cos a2
 ð15Þ
The volume of curved portion B0C can be calculated by integrating the incremental volume of tube from the

relation:
VB0C ¼ 2pt2
Z ð1�bÞh=2

0

rdx ¼ 2pt2
ð1� bÞh
2

R

"

þ bh sin a þ mh
a1

ðcos a1 � 2 cos aÞ
�
þ ðmhÞ2

a21
sin a

#
ð16Þ
By equating the volume of outside portion in defined state of the tube to its initial volume, V02 given by
Eq. (2), the average thickness of outside portion of the tube can be found from the relation:
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t2 ¼
2pRt0ð1� mÞh
VA0B
t2

þ VBB0
t2

þ VB0C
t2

� � ð17Þ
It is to be noted here that the term t2 appearing on the right hand side in the denominator gets eliminated
when the expressions for VA0B, VBB0 and VB0C are substituted from Eqs. (12), (14) and (16) respectively.

2.4. Energy absorbed in bending

The energy absorbed in bending when angle a gets incremented by da is given by:
dWb ¼ 2p Mp1

a1
a

� �
ðRA

h
þ RÞ þMp2 1

�
� a1

a

�
ðRþ RBÞ þMp2ðRB0 þ RCÞ

i
da
Putting the values of RA, RB, RB0 and RC from Eqs. (3) to (6), we get
dWb ¼ 2p Mp1

2Ra1
a


�
� mh

a
þ mh

a
cos a1

�
�Mp2

2Ra1
a



þ mh

a
cos a1 �

mh
a
cos a

�

þMp2 4R



þ 2bh sin a þ 3mh
a1
cos a1 �

4mh
a1
cos a þ mh

a1

��
da ð18Þ
Mp1 and Mp2 are the plastic moment capacities of the section of the tube for portion AA
0 and A0C

respectively. These are given by Mp1 ¼ kfyt21 and Mp2 ¼ kfyt22, where the value of k for Von–Mises crite-
rion has been taken as k ¼ 1

2
ffiffi
3

p , t1 and t2 are the average thickness of the inside and outside portion of the
fold.

At the start of the collapse of the tube, the hinge angle a will be zero and radius of curvature will be
infinite. As the collapse of the tube progresses, the hinge angle increases and radius of curvature of curved

portion of fold reduces till the fold in formation comes in contact with the previously formed fold. The

hinge angle at this stage will be the maximum hinge angle am. No further deformation is considered and
hence contact stresses between the two limbs of consecutive folds are not developed. After reaching this
stage, next fold is assumed to begin. Therefore in the present analysis each fold is assumed to form

independently i.e. there is no simultaneous formation of folds. Total bending energy can now be computed

by integrating this expression from 0 to the maximum hinge angle, am, thus
Wb ¼ 2pkfy 2R
Z am

0

t21a1
a
da

�
� mh

Z am

0

t21 da
a

þ mh
Z am

0

t21
cos a1

a
da � 2R

Z am

0

t22
a1
a
da

� mh
Z am

0

t22
cos a1

a
da þ mh

Z am

0

t22
cos a

a
da þ 4R

Z am

0

t22 da þ 2bh
Z am

0

t22 sin ada

þ 3mh
Z am

0

t22
cos a1

a1
da � 4mh

Z am

0

t22
cos a
a1
da þ mh

Z am

0

t22 da
a1

�
ð19Þ
2.5. Circumferential energy

The circumferential energy for different portions viz. AA0, A0B, BB0 and B0C has been calculated in the

following:

The change in the circumferential radius of curvature for the portion between A and A0 due to the

progress in the crushing of the tube can be obtained from Eq. (8) as:
dr ¼ 1

a21
a1x sin a2½ þ mh cos a2 � mha1 sin a1 � mh cos a1
da1 ð20Þ
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The incremental hoop strain for portion AA0 can now be obtained from:
jdehj ¼
dr
r

����
���� ð21Þ
The incremental hoop energy absorbed in the portion AA0 can be calculated from:
dWC1 ¼ fy

Z
m
jdehjdv ¼ 2pfy

Z mh

0

drt1 dx ð22Þ
Putting the value of dr from Eq. (20), we get
dWC1 ¼ 2pfyt1ðmhÞ2
2 sin a1

a31

�
� sin a1

a1
� 2 cos a1

a21

�
da1 ð23Þ
Total circumferential energy in the region AA0 can now be found by integrating it from a ¼ 0 to a ¼ am.
WC1 ¼
4pfym3h2

ð1� bÞ 2

Z am

0

t1 sin a1
a31

da

�
�
Z am

0

t1 sin a1
a1

da � 2
Z am

0

t1 cos a1
a21

da

�
ð24Þ
The incremental circumferential energies dWC2, dWC3 and dWC4 in the regions A0B, BB0 and B0C respectively

and the corresponding total circumferential energies WC2, WC3 and WC4 can similarly be found and these are
given in the following:
dWC2 ¼
4pfyt2ðmhÞ2

ð1� bÞ 2m

�

� ð1� bÞ
2

�
cos a1

a21
� ð1� bÞ

2

t2 cos a
a21

þ 2m
a31

ðsin a � sin a1Þ �
ð1� bÞ
2



� m

�
sin a1

a1

�
da ð25Þ
giving,
WC2 ¼
4pfyðmhÞ2

ð1� bÞ 2m
��

� ð1� bÞ
2

	Z am

0

t2 cos a1
a21

da � ð1� bÞ
2

Z am

0

t2 cos a
a21

da

þ 2m
Z am

0

t2
a31

ðsin a � sin a1Þda � ð1� bÞ
2

�
� m

	Z am

0

t2 sin a1
a1

da

�
ð26Þ

dWC3 ¼ 2pfyt2mbh2
sin a
a1

�
� 2m
ð1� bÞ

sin a1
a1



þ cos a1

a21

�
þ 2m
ð1� bÞ

cos a
a21

þ b
2m
cos a

�
da ð27Þ
giving,
WC3 ¼ 2pfymbh2
Z am

0

t2
sin a
a1
da

�
� 2m
ð1� bÞ

Z am

0

t2
sin a1

a1



� cos a1

a21

�
da

þ 2m
ð1� bÞ

Z am

0

t2 cos a
a21

da þ b
2m

Z am

0

t2 cos ada
�

ð28Þ

dWC4 ¼ 2pfyt2mh2
ð1� bÞ
2

1

a1
2 sin a


�
� 2m
ð1� bÞ sin a1

�
þ 3m cos a

a21
� m

a21
cos a1

� 4m2

ð1� bÞ
sin a
a31

þ bð1� bÞ
2m

cos a

�
da ð29Þ
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giving,
WC4 ¼ 2pfymh2
ð1� bÞ
2

Z am

0

t2
a1

2 sin a


�
� 2m
ð1� bÞ sin a1

�
da þ 3m

Z am

0

t2 cos a
a21

da

� 4m2

ð1� bÞ

Z am

0

t2 sin ada
a31

þ bð1� bÞ
2m

Z am

0

t2 cos ada � m
Z am

0

t2
a21
cos a1 da

�
ð30Þ
2.6. Case II: Point A0 lies in the straight portion BB0 i.e.
(1-b)

2
< m <

(1+b)
2

Similar to Case I, the thickness of tube in inside and outside portions will be determined first and then

these values will be used in the computation of internal work done. The circumferential radii of curvatures

of tube at points A, B, B0 and C (Fig. 1) are given by:
RA ¼ R� qað1� cos aÞ �
h
2
ð2mþ b � 1Þ sin a ð31Þ

RB ¼ R� h
2
ð2mþ b � 1Þ sin a ð32Þ

RB0 ¼ Rþ h
2
ð1þ b � 2mÞ sin a ¼ RC � qað1� cos aÞ ð33Þ

RC ¼ Rþ h
2
ð1þ b � 2mÞ sin a þ qað1� cos aÞ ð34Þ
where, qa is the longitudinal radius of curvature of AB and B
0C and is given by
qa ¼
ð1� bÞh
2a

ð35Þ
2.7. Mean thickness of inside portion of fold, t1

The circumferential radius, r, of the tube at any point which is lying in portion AB which is at a distance
x from point A measured along the length of the fold (Fig. 1) is given by:
r ¼ Rþ qa½cos a � cos a3
 �
h
2
ð2mþ b � 1Þ sin a ð36Þ
where
a3 ¼
2xa

ð1� bÞh
The volume of curved portion AB can be calculated by integrating the incremental volume of tube from the

relation:
VAB ¼ 2pt1
Z ð1�bÞh=2

0

rdx

¼ pð1� bÞht1 R
�

þ ð1� bÞh
2a

cos a � ð1� bÞh
2a2

sin a � h
2
ð2mþ b � 1Þ sin a

�
ð37Þ
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The circumferential radius, r, of the tube at any point which is lying in portion BA0 at a distance x from
point B measured along the length of the fold is given by:
r ¼ R� h
2
ð2mþ b � 1Þ sin a þ x sin a ð38Þ
The volume of straight portion BB0 can be calculated by integrating the incremental volume of tube from

the relation:
VBA0 ¼
Z ð2mþb�1Þh=2

0

2prt1 dx ¼ 2pt1
h
2
ð2mþ b � 1Þ R

�
� h
4
ð2mþ b � 1Þ sin a

�
ð39Þ
By equating the volume of outside portion of the tube in deformed state to its initial volume, V01 given by
Eq. (1), the average thickness of inside portion of the tube can be found from the relation:
t1 ¼
2pRmht0
VAB
t1

þ VBA0
t1

� � ð40Þ
2.8. Mean thickness of outside portion of fold, t2

The circumferential radius, r, of the tube at any point which is lying in portion A0B0 at a distance x from
point A0 measured along the length of the fold is given by:
r ¼ Rþ x sin a ð41Þ
The volume of straight portion A0B0 can be calculated by integrating the incremental volume of tube from

the relation:
VA0B0 ¼
Z ðb�2mþ1Þh=2

0

2prt2 dx ¼ pt2hðb � 2mþ 1Þ R
�

þ h
4
ðb � 2mþ 1Þ sin a

�
ð42Þ
The circumferential radius, r, of the tube at any point which is lying in portion B0C at a distance x from
point C measured along the curved length of the fold is given by:
r ¼ Rþ h
2
ðb þ 1� 2mÞ sin a þ qaðcos h � cos aÞ ð43Þ
The volume of curved portion B0C can be calculated by integrating the incremental volume of tube from the

relation:
VB0C ¼
Z a

0

2prt2qadh ¼ 2prt2R
ð1� bÞh
2

R
�

þ h
2
ðb þ 1� 2mÞ sin a þ ð1� bÞh

2

sin a
a2

�
� cos a

a

	�
ð44Þ
By equating the volume of outside portion of the tube in deformed state to its initial volume, V02, given by
Eq. (2), the average thickness of outside portion of the tube can be found from the relation:
t2 ¼
2pRð1� mÞht0

VA0B0
t2

þ VB0C
t2

� � ð45Þ
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2.9. Energy absorbed in bending

The incremental energy absorbed in bending is given by
dWb ¼ 2pbMp1ðRA þ RBÞ þMp2ðRB0 þ RCÞcda

¼ 4pMp1 R
�

� ð1� bÞh
4a

ð1� cos aÞ � h
2
ð2mþ b � 1Þ sin a

�
da

þ 4pMp2 R
�

þ h
2
ð1þ b � 2mÞ sin a þ ð1� bÞh

4a
ð1� cos aÞ

�
da ð46Þ
Total bending energy can now be computed by integrating this expression from 0 to the maximum hinge

angle, am, thus
Wb ¼ 4pkfy R
Z am

0

ðt21
�

þ t22Þda � ð1� bÞh
4

Z am

0

1

a
ðt21 � t22Þð1� cos aÞda

� h
2
ð2mþ b � 1Þ

Z am

0

t21 sin ada þ h
2
ð1þ b � 2mÞ

Z am

0

t22 sin ada

�
ð47Þ
2.10. Circumferential energy

The circumferential energy for different portions viz. AB, BA0, A0B0 and B0C has been calculated in the

following:

The change in the circumferential radius of curvature for the portion between A and B can be obtained
from Eq. (36) as:
dr ¼ ð1� bÞh
2a2

fcos a3 � a sin a � cos agda þ x
a
sin a3 da � h

2
ð2mþ b � 1Þ cos ada ð48Þ
The incremental hoop energy absorbed in the portion AB can be calculated as:
dWC1 ¼
pt1fy
a2

Z ð1�bÞh=2

0

½ð1� bÞhfcos a3 � a sin a � cos agda

þ 2ax sin a3 da � a2hð2mþ b � 1Þ cos adadx

or,
dWC1 ¼
pt1fyð1� bÞ2h2

2a3

�
� a2 sin a � 2a cos a þ sin a � a cos a þ sin a � a3

ð2mþ b � 1Þ
ð1� bÞ cos a

�
da

ð49Þ
Total circumferential energy in the region AB can now be found by integrating it from a ¼ 0 to a ¼ am.
WC1 ¼ pfy
ð1� bÞ2h2

2
2

Z am

0

t1 sin ada
a3

�
� 2

Z am

0

t1 cos a
a2

da �
Z am

0

t1 sin a
a

da

� ð2mþ b � 1Þ
ð1� bÞ

Z am

0

t1 cos ada
�

ð50Þ
The incremental circumferential energy dWC2, dWC3 and dWC4 in the region BA0, A0B0 and B0C respectively
and the corresponding total circumferential energy WC2, WC3 and WC4 can similarly be found and these are
given in the following:
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dWC2 ¼ �pfyt1
h2

4
ð2mþ b � 1Þ2 cos ada ð51Þ
giving
WC2 ¼ �pfy
h2ð2mþ b � 1Þ2

4

Z am

0

t1 cos ada ð52Þ

dWC3 ¼ pfy
h2

4
ðb � 2mþ 1Þ2t2 cos ada ð53Þ
giving
WC3 ¼ pfy
h2

4
ðb � 2mþ 1Þ2

Z am

0

t2 cos ada ð54Þ

dWC4 ¼ pfyt2
ð1� bÞ2h2

2

ðb þ 1� 2mÞ
ð1� bÞ cos a

�
þ sin a

a
þ 2 cos a

a2
� 2 sin a

a3

�
da ð55Þ
giving
WC4 ¼ pfy
ð1� bÞ2h2

2

ðb þ 1� 2mÞ
ð1� bÞ

Z am

0

t2 cos ada
�

þ
Z am

0

t2
sin a

a
1



� 2

a2

�
da þ 2

Z am

0

t2 cos a
a2

da

�
ð56Þ
2.11. Case III: Point A0 lies in the curved portion B0C i.e.
(1+b)

2
< m < 1

The circumferential radii of curvatures of tube at points A, B, B0 and C (Fig. 1) are given by:
RC ¼ Rþ qað1� cos a1Þ ð57Þ

RB0 ¼ R� qaðcos a1 � cos aÞ ð58Þ

RB ¼ RB0 � bh sin a ¼ R� qaðcos a1 � cos aÞ � bh sin a ð59Þ

RA ¼ R� qaðcos a1 � 2 cos a þ 1Þ � bh sin a ð60Þ

where
a1 ¼
2ð1� mÞa
ð1� bÞ ð61Þ
and,
da1 ¼
2ð1� mÞ
ð1� bÞ da ð62Þ
2.12. Mean thickness of inside portion of fold, t1

The circumferential radius, r, of the tube at any point which is lying in portion AB at a distance x from
point A measured along the length of the fold is given by:
r ¼ R� qa½cos a1 � 2 cos a þ cos a3
 � bh sin a ð63Þ

The volume of straight portion AB can be calculated by integrating the elemental volume of tube from the

relation:
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VAB ¼ 2pt1
Z ð1�bÞh=2

0

rdx ¼ pt1ð1� bÞh R
�

� bh sin a � ð1� bÞh
2a

cos a1

�
� 2 cos a þ sin a

a

	�
ð64Þ
The circumferential radius, r, of the tube at any point which is lying in straight portion BB0 at a distance x
from point B measured along the length of the fold is given by:
r ¼ R� qaðcos a1 � cos aÞ � bh sin a þ x sin a ð65Þ
The volume of straight portion BB0 can be calculated by integrating the elemental volume of tube from the
relation:
VBB0 ¼ 2pt1
Z bh

0

rdx ¼ 2pt1bh R
�

� ð1� bÞh
2a

ðcos a1 � cos aÞ �
bh
2
sin a

�
ð66Þ
The circumferential radius, r, of the tube at any point which is lying in portion B0A0 at a distance x from
point C measured along the length of the fold is given by:
r ¼ R� qaðcos a1 � cos a3Þ ð67Þ
The volume of curved portion B0A0 can be calculated by integrating the elemental volume of tube from the
relation:
VB0A0 ¼ 2pt1
Z ð1�bÞh=2

ð1�mÞh
rdx

¼ pht1 ð2m
�

� b � 1Þ R
�

� ð1� bÞh
2a

cos a1

	
þ ð1� bÞ2 h

2a2
ðsin a � sin a1Þ

�
ð68Þ
By equating the volume of inside portion of the tube in deformed state to its initial volume, V01, given by
Eq. (1), the average thickness of inside portion of the tube can be found from the relation:
t1 ¼
2pRt0mh

VAB
t1

þ VBB0
t1

þ VB0A0
t1

� � ð69Þ
2.13. Mean thickness of outside portion of fold, t2

The circumferential radius, r, of the tube at any point which is lying in portion CA0 at a distance x from
point C measured along the length of the fold is given by:
r ¼ Rþ qaðcos a3 � cos a1Þ ð70Þ
The volume of curved portion CA0 can be calculated by integrating the elemental volume of tube from the

relation:
VCA0 ¼ 2pt2
Z ð1�mÞh

0

rdx
or,
VCA0

t2
¼ 2p Rð1

"
� mÞhþ ð1� bÞ2h2

4a2
sin a1 �

ð1� bÞh2ð1� mÞ
2a

cos a1

#
ð71Þ
Considering the conservation of mass i.e. equating the total volume in the deformed state to its initial

volume, we get the average thickness of the tube as,



B.L. Tyagi et al. / International Journal of Solids and Structures 41 (2004) 7129–7153 7141
t2 ¼
2pRt0ð1� mÞh

VCA0
t2

ð72Þ
where,
VCA0
t2
is given by Eq. (71).
2.14. Energy absorbed in bending

The energy absorbed in bending when angle a gets incremented by da, is given by
dWb ¼ 2p Mp1ðRA
h

þ RBÞ þMp1 1
�

� a1
a

�
ðRB0 þ RA0 Þ þMp2

a1
a
ðRA0 þ RCÞ

i
da
or,
dWb ¼ 2pkfy t21 2R
��

� ð1� bÞh
2a

ð2 cos a1 � 3 cos a þ 1Þ � 2bh sin a þ 1
�

� a1
a

�

� 2R



� ð1� bÞh
2a

ðcos a1 � cos aÞ
�	

þ t22
a1
a
2R

�
þ ð1� bÞh

2a
ð1� cos a1Þ

	�
da ð73Þ
Total bending energy can now be computed by integrating this expression from 0 to the maximum hinge

angle, am, thus
Wb ¼ 2pkfy
Z am

0

t21 2R
�

� ð1� bÞh
2a

ð2 cos a1 � 3 cos a þ 1Þ � 2bh sin a þ 1
�

� a1
a

�

� 2R
�

� ð1� bÞh
2a

ðcos a1 � cos aÞ
	�
da þ 2pkfy

Z am

0

t22
a1
a
2R



þ ð1� bÞh

2a
ð1� cos a1Þ

�
da

ð74Þ
2.15. Circumferential energy

The circumferential energy for different portions viz. AB, BB0, B0A0 and A0C has been calculated in the

following:

The change in the circumferential radius of curvature for the portion between A and B can be obtained

from Eq. (63) as:
dr ¼ �ð1� bÞh
2a

2 sin ada

�
� sin a1 da1 �

2x
ð1� bÞh sin a3 da

�

þ ð1� bÞh
2a2

cos a1½ � 2 cos a þ cos a3
da � bh cos ada ð75Þ
The incremental hoop energy absorbed in the portion AB can be calculated as:
dWC1 ¼ 2pt1fy
Z ð1�bÞh=2

0

�
� ð1� bÞh

2a
2 sin ada

�
� sin a1 da1 �

2x
ð1� bÞh sin a3

	
dadx

þ ð1� bÞh
2a2

fcos a1 � 2 cos a þ cos a3gda � bh cos ada
�
dx
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or
dWC1 ¼ 2pt1fy
ð1� bÞ2h2
4a2

�
� a 2 sin a

�
� 2ð1� mÞ

ð1� bÞ sin a1

	

� 3 cos a þ cos a1 þ
2

a
sin a � 2ba2

ð1� bÞ cos a
�
da ð76Þ
Total circumferential energy in the region AB can now be found by integrating it from a ¼ 0 to a ¼ am.
WC1 ¼ 2pfy
ð1� bÞ2h2

4
2

Z am

0

t1 sin a
a

1� a2

a2


 �
da

�
þ 2ð1� mÞ

ð1� bÞ

Z am

0

t1 sin a1
a

da

þ
Z am

0

t1
ðcos a1 � 3 cos aÞ

a2
da � 2b

ð1� bÞ

Z am

0

t1 cos ada
�

ð77Þ
The incremental circumferential energy dWC2, dWC3 and dWC4 and the corresponding total circumferential
energy WC2, WC3 and WC4 in the regions BB0, B0A0 and A0C respectively can similarly be found and these are

given in the following:

or,
dWC2 ¼ pt1fybh2
ð1� bÞ

a
cos a1 � cos a

a

n�
� sin a

o
da þ 2ð1� mÞ sin a1 da

a
� b cos ada

�
ð78Þ

WC2 ¼ pfybh2 ð1
�

� bÞ
Z am

0

t1
cos a1 � cos a � a sin a

a2

� 	
da

þ 2ð1� mÞ
Z am

0

t1
sin a1

a
da � b

Z am

0

t1 cos ada
�

ð79Þ

dWC3 ¼ pt1fyðb � 1Þh2 ðb � 1Þð2 sin a � a cos a � 2 sin a1Þ
2a3

da

�
� ð2m� b � 1Þð1� mÞ

ðb � 1Þa sin a1 da

þ ð3� 4mþ bÞ
2a2

cos a1 da

�
ð80Þ

WC3 ¼ pfyðb � 1Þh2 ð1� bÞ
2

Z am

0

t1ð2 sin a � a cos a � 2 sin a1Þ
a3

da

�

� ð2m� b � 1Þð1� mÞ
ð1� bÞ

Z am

0

t1 sin a1
a

da þ ð3� 4mþ bÞ
2

Z am

0

t1 cos a1
a2

da

�
ð81Þ

dWC4 ¼ pfyt2ð1� bÞh2 2ð1� mÞ2

ð1� bÞ
sin a1

a
da

"
þ 2ð1� mÞ cos a1

a2
da � ð1� bÞ sin a1

a3
da

#
ð82Þ

WC4 ¼ pfyð1� bÞh2 2ð1� mÞ2

ð1� bÞ

Z am

0

t2 sin a1
a

da

"
þ 2ð1� mÞ

Z am

0

t2 cos a1
a2

da

� ð1� bÞ
Z am

0

t2 sin a1
a3

da

#
ð83Þ
Total incremental strain energy for the small increment in angle a by da for each case can be calculated as
dWT ¼ dWb þ 2ðdWC1 þ dWC2 þ dWC3 þ dWC4Þ ð84Þ
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Total work done for each case in crushing up to hinge angle a can then be calculated from:
Wa ¼
Z a

0

dWT ¼
Z a

0

½dWb þ 2ðdWC1 þ dWC2 þ dWC3 þ dWC4Þ
 ð85Þ
Total energy absorbed in bending and circumferential deformation up to maximum hinge angle, am, can
thus be calculated for each case from
WT ¼ Wb þ 2ðWC1 þ WC2 þ WC3 þ WC4Þ ð86Þ
3. Average crushing load

Applying the energy balance by equating the external work done to the energy absorbed in bending and

circumferential deformation, the mean crushing load, Pm, can be obtained from the expression:
PmdT ¼ WT ð87Þ
where, WT is the total energy absorbed in bending and circumferential deformation to be calculated from
Eq. (86) by suitably putting the values of Wb, WC1, WC2, WC3, and WC4 depending upon the applicability of the
case considered in the analysis above; and dT is the total effective crushing distance corresponding to one
complete fold which is given by:
dT ¼ 2h� t0 � 2qf ð88Þ
where, qf ¼ ð1�bÞh
2am

¼ final radius of curvature of curved portion of fold; and am is the maximum hinge angle.
Eq. (87) is based on the assumption that the energy is absorbed in plastic deformation in bending and

circumferential deformations only and thus neglecting the energy absorption in axial and shear deforma-

tion.
4. Size of fold and folding parameter

The size of fold, h, and the folding parameter, m, can be determined by minimizing the mean crushing
load Pm, thus
@Pm
@h

¼ 0 ð89Þ

@Pm
@m

¼ 0 ð90Þ
The expression for mean crushing load being very complex, closed-form solution for h as well as m can not
be found and, therefore, these can be determined numerically.
5. Variation of crushing load

The crushing load, P at any instant of crushing when the rotation of fold is a, can be calculated by
P ¼ dWa

dd
ð91Þ
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where, Wa is the total work done in crushing up to an angle a given by the Eq. (85) and d is the vertical
compression given by:
d ¼ 2h� 4qa sin a � 2bh cos a ð92Þ

and, therefore,
dd ¼ 2ð1� bÞh sin a
a2
da � 2ð1� bÞh cos a

a
da þ 2bh sin ada ð93Þ
6. Mode of collapse

For the understanding of the mode of deformation, progress of collapse of round tubes for b ¼ 1=3 as
taken in (Grzebeita, 1990; Gupta and Velmurugan, 1997) has been shown in Fig. 3 The values of a for
which the deformed shape of tube has been shown in these figures have been chosen arbitrarily so as to
show the progress of collapse of tubes distinctly, but final value of a is the maximum hinge angle, after
which no further deformation is considered in the fold. The final crushed shape of tubes for different values

of b (b ¼ 0, 1/4, 1/3, 1/2, 2/3, 3/4, 0.9 and 1) has been shown in Fig. 4. The maximum hinge angle for every
case has also been mentioned under each figure. Mathematically, maximum hinge angle am corresponds to
the stage at which crushing distance is equal to the final crushing distance dT given by Eq. (88). The
influence of the thickness of tube on the maximum hinge angle and the mode of deformation has been

neglected.

The variation of maximum hinge angle with the variation of the value of b has been plotted in Fig. 5. The
variation of final radius of curvature of tube with the variation of b has also been shown in this figure. The
best-fit equations for the estimation of am (in deg.) and final radius of curvature are given below
am ¼ �52:453b3 þ 139:38b2 � 146:99b þ 149:73 ð94Þ
β=Straight fold length coefficient = 1/3
α
α

=Hinge angle at any stage of collapse
m= Maximum hinge angle 
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( =90˚)
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Fig. 3. Progressive collapse of round tube for b ¼ 1=3.
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Fig. 4. Final crushed shape of round tube.
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and
qf
h
¼ �0:1656b2 � 0:0324b þ 0:1944 ð95Þ
The maximum hinge angle and the non-dimensional final radius of curvature of tube are independent of

the radius of tube as well as the size of fold. The value of maximum hinge angle thus obtained for a known
value of b has been used in the integration involved in the mathematical model.
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7. Validation with experiments

Some experimental results involving crushing of aluminium and steel cylindrical tubes (Table 1) have

been reported in literature (Gupta and Velmurugan, 1997; Gupta and Abbas, 2000, 2001). Out of these
experiments, two results (Table 2) for which load–compression curves are available have been taken for the

purpose of validation of the mathematical model presented in the paper.

7.1. Size of fold and folding parameter

Since no closed form solution is available for the determination of size of fold and folding parameter,

these have been determined numerically by minimizing the mean crushing load using Eqs. (89) and (90).

The values of size of fold and folding parameter thus calculated are reported in Tables 2–4 for outside
folding, inside folding, and partly inside/outside folding respectively. The results of change in thickness of

tube are also given in these tables. Four different values of b have been considered in these calculations.
It is observed from these tables that the size of fold decreases with increase in the value of b for outside

folding, inside folding as well as partly inside/outside folding. The statement is true for no change in

thickness as well as change in thickness also. For outside folding with increase in the value of b, the
consideration of change in thickness of tube results in the increase of the size of the fold. For inside folding

with increase in the value of b, the consideration of change in thickness of tube results in the decrease in the
size of fold. For partly inside/outside folding with increase in the value of b, the consideration of change in
thickness of tube does not have any significant effect on the size of fold.
Table 1

Experimental results involving crushing of cylindrical tubes

Parameter Steel tube (fy ¼ 400 MPa) Aluminium tube (fy ¼ 160 MPa)
Radius, R (mm) 21.50 24.80

Mean thickness, t0 (mm) 1.80 1.60

Size of fold, h (mm) 17.50 6.74

Folding parameter, m 0.274 0.257

Non-dimensional mean crushing loada, Pm=P0 – 0.455

a P0 ¼ 2pRt0fy.

Table 2

Analytical results for total outside foldinga

Straight fold length coefficient, b Mean crushing load, Pm=P0 Size of fold, h (mm) Thickness of outside

portion of fold, t2 (mm)

Steel tube

0.0 0.615(0.496) 13.92(15.42) 1.80(1.434)

1/3 0.539(0.451) 11.96(12.96) 1.80(1.459)

2/3 0.498(0.417) 10.38(11.26) 1.80(1.462)

1.0 0.459(0.386) 09.36(10.20) 1.80(1.456)

Aluminium tube

0.0 0.530(0.436) 13.92(15.36) 1.60(1.311)

1/3 0.469(0.399) 11.82(12.88) 1.60(1.332)

2/3 0.429(0.367) 10.36(11.20) 1.60(1.334)

1.0 0.395(0.339) 09.34(09.96) 1.60(1.333)

aValues within parenthesis are for change in thickness condition.



Table 4

Analytical results for partly inside and partly outside folding

Straight fold length

coefficient (b)
Mean crushing

loada (Pm=P0)
Folding

parametera, m
Size of folda, h
(mm)

Thickness of inside

portion of fold, t1
(mm)

Thickness of outside

portion of fold, t2 (mm)

Steel tube

0.0 0.414(0.382) 0.62(0.44) 17.78(16.94) 2.116 1.538

1/3 0.392(0.373) 0.68(0.42) 14.22(14.32) 2.055 1.534

2/3 0.355(0.337) 0.52(0.46) 13.56(14.02) 2.107 1.536

1.0 0.309(0.295) 0.52(0.44) 12.82(12.90) 2.074 1.541

Aluminium tube

0.0 0.361(0.339) 0.62(0.44) 17.90(16.50) 1.831 1.399

1/3 0.342(0.324) 0.68(0.48) 14.26(15.96) 1.856 1.392

2/3 0.307(0.293) 0.52(0.44) 13.58(13.22) 1.805 1.397

1.0 0.267(0.257) 0.52(0.46) 12.84(12.86) 1.817 1.404

aValues within parenthesis are for change in thickness condition.

Table 3

Analytical results for total inside foldinga

Straight fold length

coefficient, b
Mean crushing load (Pm=P0) Size of fold h (mm) Thickness of inside

portion of fold, t1 (mm)

Steel tube

0.0 0.526(0.656) 13.88(12.36) 1.80(2.269)

1/3 0.478(0.580) 11.74(10.38) 1.80(2.219)

2/3 0.441(0.530) 10.26(09.26) 1.80(2.227)

1.0 0.426(0.453) 09.46(08.52) 1.80(2.239)

Aluminium tube

0.0 0.467(0.558) 13.80(12.70) 1.60(1.961)

1/3 0.420(0.494) 11.72(10.82) 1.60(1.929)

2/3 0.385(0.452) 09.44(09.02) 1.60(1.909)

1.0 0.370(0.389) 09.44(08.62) 1.60(1.933)

aValues within parenthesis are for change in thickness condition.
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The value of m obtained for both tubes is more than 0.5 because of lesser energy absorption in cir-
cumferential deformation for inside portion of fold (Gupta and Abbas, 2000, 2001), when change in

thickness of tube is not considered.

The consideration of change in thickness is found to have reduced the value of parameter m which is due
to the increase in the thickness of the inside part of fold and decrease in the thickness of the outside part of

the fold, thus resisting the inside movement of the fold. The value of m for both tubes is found to range
from 0.42 to 0.48. It is also observed that the value of parameter m comes closer to the experimental values
after considering change in thickness for aluminium tube.

7.2. Mean crushing load

The value of non-dimensional mean crushing load ‘Pm=P0’ for outside folding, inside folding and partly
inside/outside folding models are given in Tables 2–4 for steel as well as aluminium tube, where

P0 ¼ 2pRt0fy the effect of change in the thickness of tube in all the three models has also been given in these
tables.
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It is observed from the analysis of steel as well as aluminium tubes that the mean crushing load and

hence, the total energy absorbed in crushing reduces as the value of b increases. This is true for all the three
models namely outside model, inside model and partly inside/outside model.

The consideration of change in thickness in outside and partly inside/outside folding models results in
decrease in mean crushing load whereas for inside folding it is vice versa. This is valid for all values of b.
The influence of change in thickness on the mean crushing load is however small. The decrease in the mean

crushing load in the outside fold model is due to the decrease in thickness of tube during folding whereas for

inside fold model, there will be increase in thickness thus resulting in increase in mean crushing load. In the

partly inside/outside fold model there will be an increase in the value of mean crushing load because of

increase of thickness in the inner portion of fold and decrease in mean crushing load because of decrease in

thickness in the outside portion of fold. It is due to this reason the effect of consideration of change in

thickness in partly inside/outside fold model on the mean crushing load is insignificant.
In quantitative terms, the influence of change in thickness on the mean crushing load for total outside

folding varies from 7% to 19% for steel tube and 14% to 17% for aluminium tube taken in the study. The

corresponding values of change in mean crushing load for total inside folding vary from 6% to 24% for steel

tube and 5% to 19% for aluminium tube, whereas for partly inside/outside folding the effect of change in

thickness on mean crushing load is minimum and it varies from 4% to 7% for steel tube and 4% to 6% for

aluminium tube. Maximum effect of change in thickness is for b ¼ 0 (i.e. no straight length in fold) and
minimum for b ¼ 1 (i.e. total straight fold).

7.3. Load–deformation curves

The size of fold and the folding parameter determined numerically by minimizing the mean crushing

load have been used for finding out the variation of crushing load.

The load–deformation curves for all the three models (i.e. outside, inside and partly inside/outside

models) for different values of b and for constant as well as varying thickness have been shown in Figs. 6–11
for steel tube (b in the legend of figures may be read as b). The analytical load–deformation curves are not
starting from zero load level due to the neglect of the elastic deformation in the beginning. For all the three

models with constant as well as varying thickness of tube, the reduction in value of b brings the analytical
load–deformation curves closer to the experimental curves.
With change in thickness in outside and partly inside/outside folding models, the load–deformation

curve drifts away from the experimental curve, whereas for inside folding it is vice versa. This holds for all

values of b.
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Fig. 6. Load compression curves of R ¼ 21:5 mm, t0 ¼ 1:8 mm steel tube for outside folding with no change in thickness.
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Fig. 7. Load compression curves of R ¼ 21:5 mm, t0 ¼ 1:8 mm steel tube for outside folding with change in thickness.
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Fig. 8. Load compression curves of R ¼ 21:5 mm, t0 ¼ 1:8 mm steel tube for inside folding with no change in thickness.
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Fig. 9. Load compression curves of R ¼ 21:5 mm, t0 ¼ 1:8 mm steel tube for inside folding with change in thickness.
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Fig. 10. Load compression curves of R ¼ 21:5 mm, t0 ¼ 1:8 mm steel tube for partly inside and partly outside folding with no change in
thickness.
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Fig. 11. Load compression curves of R ¼ 21:5 mm, t0 ¼ 1:8 mm steel tube for partly inside and partly outside folding with change in
thickness.
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Fig. 12. Load compression curves of R ¼ 24:8 mm, t0 ¼ 1:6 mm aluminium tube for outside folding with no change in thickness.
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Fig. 13. Load compression curves of R ¼ 24:8 mm, t0 ¼ 1:6 mm aluminium tube for outside folding with change in thickness.
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Fig. 14. Load compression curves of R ¼ 24:8 mm, t0 ¼ 1:6 mm aluminium tube for inside folding with no change in thickness.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 5.0 10.0 15.0 20.0
Deformation (mm)

N
on

-D
im

en
si

on
al

 C
ru

sh
in

g 
L

oa
d 

(P
/P

0)

Experiment

Analytical (b =0.0)

Analytical (b =0.33)

Analytical (b =0.67)

Analytical (b =1.0)

Fig. 15. Load compression curves of R ¼ 24:8 mm, t0 ¼ 1:6 mm aluminium tube for inside folding with change in thickness.
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Fig. 16. Load compression curves of R ¼ 24:8 mm, t0 ¼ 1:6 mm aluminium tube for partly inside and partly outside folding with no
change in thickness.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 5.0 10.0 15.0 20.0
Deformation (mm)

N
on

-D
im

en
si

on
al

 C
ru

sh
in

g 
L

oa
d 

(P
/P

0)

Experiment

Analytical (b =0.0, m=0.44)

Analytical (b =0.33, m=0.48)

Analytical (b =0.67, m=0.44)

Analytical (b =1.0, m=0.46)

Fig. 17. Load compression curves of R ¼ 24:8 mm, t0 ¼ 1:6 mm aluminium tube for partly inside and partly outside folding with
change in thickness.
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For aluminium tube, similar observations are made. The results have been plotted in Figs. 12–17 (b in
the legend of figures may be read as b).
8. Conclusions

In the present paper, a curved fold model with variable straight length and variation in the thickness of

tube has been developed. The variation of circumferential strain during the formation of fold has been

taken into consideration. The present model considers partly inside and partly outside folds and thus total

outside and total inside fold models can be easily derived. Optimal value of folding parameter, m, has been
evaluated analytically. An expression has been derived for determining the variation of crushing load

during fold formation. The maximum hinge angle and the final radius of curvature of fold have been

determined mathematically.
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The size of fold decreases with increase in the value of b for outside folding, inside folding as well as
partly inside and partly outside folding with no change in thickness. The consideration of change in

thickness in the partly inside and partly outside folding does not have any significant effect on the size of

fold. For outside folding and for known value of b, the consideration of change in thickness of tube results
in the increase in the size of fold, and vice versa in the case of inside folding. The folding parameter, m,
reduces when change in the thickness of tube during the formation of fold is incorporated in the model thus

bringing it closer to the experiments. The mean crushing load reduces with increase in the value of b. The
results have been compared with experiments.
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